本书以“深海耐压球壳基础理论和关键技术”为题,对深海耐压球壳的设计制造和分析技术的研究背景和发展、影响深海耐压球壳强度和长期使用安全性的基础理论和关键技术,以及对深海耐压球壳考核验证和数值仿真方法进行了详细介绍,着重阐释了基于耐压球壳备选材料综合性能的选材标准、耐压球壳线性和非线性屈曲理论基础及计算方法,以及用于耐压球壳蠕变疲劳寿命预报的裂纹扩展率模型。&...
本书以“深海耐压球壳基础理论和关键技术”为题,对深海耐压球壳的设计制造和分析技术的研究背景和发展、影响深海耐压球壳强度和长期使用安全性的基础理论和关键技术,以及对深海耐压球壳考核验证和数值仿真方法进行了详细介绍,着重阐释了基于耐压球壳备选材料综合性能的选材标准、耐压球壳线性和非线性屈曲理论基础及计算方法,以及用于耐压球壳蠕变疲劳寿命预报的裂纹扩展率模型。
在此基础上,对深海耐压球壳的评价、试验和仿真方法的经验积累进行了总结。其中,团队创新性提出的考虑保持载荷效应的小时间域裂纹扩展模型、超高强度钢耐压舱极限承载能力评估模型、覆盖全海深的耐压舱设计与分析系统,填补了国内外相关研究的空白,拓展了深海装备前沿技术的理论体系,具有重要的学术价值。
目 录
chapter 1 general introduction of deep-sea spherical pressure hulls 1
1.1application scenario of deep-sea spherical pressure hulls 2
1.2 the design methodology of deep-sea pressure hull 6
1.2.1 shape selection 6
1.2.2 material selection 8
1.2.3 hull thickness requirement based on the depth limit and safety factor 9
1.2.4 end closures design compatible with the hull and design requirement 9
1.3 other considerations to ensure safety 10
1.3.1 reliability 10
1.3.2 fatigue and fracture 12
1.3.3 model test 14
1.3.4 seal design 16
1.4 manufacturing process of deep-sea pressure hulls 17
references 21
chapter 2 material selection for deep-sea spherical pressure hulls 23
2.1 candidate materials for deep-sea spherical pressure hulls 24
2.1.1 steels 26
2.1.2 aluminium alloys 28
2.1.3 titanium alloys 28
2.1.4 acrylic plastics (polymethyl methacrylate) 29 2.1.5
composites 30
2.2 practice for material selection 31
2.2.1 selection of titanium alloys 33
2.2.2 selection of maraging steels 44
references 50
chapter 3 linear buckling mechanics of deep-sea spherical pressure hulls 53
3.1 overview of current rules for spherical pressure hulls 53
3.1.1 introduction of rules 53
3.1.2 comparison of rules 59
3.2 analytical analysis 62
3.2.1 strength evaluation 62
3.2.2 stability evaluation 69
3.3 numerical analysis 76
3.3.1 brief introduction of fem principle 76
3.3.2 numerical study of different methods 82
references 92
chapter 4 nonlinear buckling of deep-sea spherical pressure hulls 94
4.1 overview of current studies 94
4.1.1 empirical formulae 94
4.1.2 phenomenological models 104
4.2 elastic-plastic buckling analysis 107
4.2.1 titanium alloy spherical pressure hulls 107
4.2.2 maraging steel spherical pressure hulls 124
4.3 experimental study in laboratory scale 127
4.3.1 materials and methods 128
4.3.2 results and discussion 132
references 143
chapter 5 fatigue life assessment theory for deep-sea spherical pressure hulls 146
5.1 analysis methods for fatigue of spherical pressure hulls 147
5.1.1 loading history of the spherical pressure hull 148
5.1.2 low-cycle fatigue theory based on strain-cycles curve 152
5.1.3 methods based on crack growth theory 158
5.1.4 a simplified life estimation method 185 references 192
chapter 6 testing and numerical simulation of deep-sea spherical pressure hulls 195
6.1 verification testing 197
6.1.1 ultimate compression-carrying capacity testing for scale model 198
6.1.2 hydrostatic pressure testing for viewports 207
6.1.3 function testing for hatch-cover opening and closing mechanism 209
6.2 inspection testing 210
6.2.1 material properties testing 210
6.2.2 geometrical size measurement 213
6.3 acceptance testing 214
6.3.1 leakage testing 214
6.3.2 hydrostatic pressure testing 215
6.4 numerical simulation 216
6.4.1 structural strength calculation of the deep-sea spherical pressure hull using fea method 216
6.4.2 numerical simulation on collapse of the deep-sea spherical pressure hull 221
6.4.3 the simulation of transient dynamic process of crushing 226
references 233